

Kinetic Equations

Text of the Exercises

– 06.05.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

We recall that the collision term of the (general) Boltzmann equation for hard sphere interactions is:

$$Q(f, f)(v) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} (f(v') f(v'_*) - f(v) f(v_*)) |(v - v_*) \cdot \omega| d\omega dv_*.$$
 (1)

We consider now an homogeneous solution f of the Boltzmann equation (which does not depend on the position variable x) and radial in velocity (which depends only on the norm $|v|$ of the velocity variable v).

- Under those hypotheses, show that the collision term (1) of the Boltzmann equation writes:

$$\begin{aligned} Q(f, f)(v) &= \\ &= 4\pi^2 \int_0^{+\infty} \int_0^\pi \int_0^\pi \left(f\left(\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1}\right) f\left(\sqrt{r_1^2 \sin^2 \theta_1 + r^2 \cos^2 \theta}\right) - \right. \\ &\quad \left. - f(r) f(r_1) \right) |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1, \end{aligned}$$
 (2)

where r denotes $|v|$.

Hint: Denote as r_1 the norm of the velocity v_* , θ the angle between the velocity v and ω , and θ_1 the angle between the velocity v_* and ω .

- Considering the transformation $\varphi : (r, r_1, \theta, \theta_1) \mapsto (r', r'_1, \theta', \theta'_1)$ defined through the system:

$$\begin{cases} r' \cos \theta' = r_1 \cos \theta_1, \\ r' \sin \theta' = r \sin \theta, \\ r'_1 \cos \theta'_1 = r \cos \theta, \\ r'_1 \sin \theta'_1 = r_1 \sin \theta_1, \end{cases}$$
 (3)

show that the collision term (2) can be abbreviated as:

$$C \int_0^{+\infty} \int_0^\pi \int_0^\pi (f(t, r') f(t, r'_1) - f(t, r) f(t, r_1)) V(r, r_1, \theta, \theta_1) r_1^2 d\theta d\theta_1 dr_1,$$
 (4)

with $V(r, r_1, \theta, \theta_1) = |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1$.

Exercise 2

We consider now the gain term of the collision operator, that is the part:

$$\int_{\mathbb{R}^3} \int_{\mathbb{S}^2} f' f'_* B(v - v_*, \omega) d\omega dv_*$$

in the right-hand side of the Boltzmann equation. In the case of hard sphere interactions with a solution which is homogeneous and radial in velocity, we saw that this term can be written as:

$$J(f) = \int_0^{+\infty} \int_0^\pi \int_0^\pi f\left(t, \sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1}\right) f\left(t, \sqrt{r_1^2 \sin^2 \theta_1 + r^2 \cos^2 \theta}\right) \times |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1. \quad (5)$$

- Considering $x = \cos \theta$ and $y = \cos \theta_1$, show that (5) is equal to

$$2 \int_0^{+\infty} \int_0^1 \int_0^1 f\left(t, \sqrt{r^2 - r^2 x^2 + r_1^2 y^2}\right) f\left(t, \sqrt{r_1^2 - r_1^2 y^2 + r^2 x^2}\right) \times (|r_1 y - rx| + |r_1 y + rx|) r_1^2 dy dx dr_1. \quad (6)$$

- Considering $u = \sqrt{r^2 - r^2 x^2 + r_1^2 y^2}$ and $v = \sqrt{r_1^2 - r_1^2 y^2 + r^2 x^2}$, show that (5) is equal to

$$4 \int_0^{+\infty} \int_0^{+\infty} f(t, u) f(t, v) G(r, u, v) u v d u d v, \quad (7)$$

where G is defined as:

$$\begin{cases} G(r, u, v) = 0 & \text{if } u^2 + v^2 \leq r^2, \\ G(r, u, v) = 1 & \text{if } u \geq r, v \geq r, \\ G(r, u, v) = v/r & \text{if } u \geq r, v \leq r, \\ G(r, u, v) = u/r & \text{if } u \leq r, v \geq r, \\ G(r, u, v) = \sqrt{u^2 + v^2 - r^2}/r & \text{if } u^2 + v^2 \geq r^2, u \leq r, v \leq r. \end{cases}$$

Exercise 3

Finally, we consider the loss term of the collision operator, that is the part:

$$\int_{\mathbb{R}^3} \int_{\mathbb{S}^2} f f' B(v - v_*, \omega) d\omega dv_*$$

in the right-hand side of the Boltzmann equation. In the case of hard sphere interactions with a solution which is homogeneous and radial in velocity, we saw that this term can be written as:

$$\int_0^{+\infty} \int_0^\pi \int_0^\pi f(t, r) f(t, r_1) V(r, r_1, \theta, \theta_1) r_1^2 d\theta d\theta_1 dr_1 = f(t, r) L(f)(t, r),$$

with

$$L(f)(t, r) = \int_0^{+\infty} P(r, r_1) f(t, r_1) r_1^2 dr_1,$$

and

$$P(r, r_1) = \int_0^\pi \int_0^\pi |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 d\theta d\theta_1. \quad (8)$$

Show that the quantity P in (8) can be expressed as:

$$P(r, r_1) = \left(2r + \frac{2r_1^2}{3r}\right) \mathbb{1}_{r_1 \leq r} + \left(2r_1 + \frac{2r^2}{3r_1}\right) \mathbb{1}_{r_1 > r}.$$